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Abstract Reservoir souring in oVshore oil Welds is caused
by hydrogen sulphide (H2S) produced by sulphate-reducing
bacteria (SRB), most often as a consequence of sea water
injection. Biocide treatment is commonly used to inhibit
SRB, but has now been replaced by nitrate treatment on
several North Sea oil Welds. At the Statfjord Weld, injection
wells from one nitrate-treated reservoir and one biocide-
treated reservoir were reversed (backXowed) and sampled
for microbial analysis. The two reservoirs have similar
properties and share the same pre-nitrate treatment history.
A 16S rRNA gene-based community analysis (PCR-
DGGE) combined with enrichment culture studies showed
that, after 6 months of nitrate injection (0.25 mM NO3

¡),
heterotrophic and chemolithotrophic nitrate-reducing bac-
teria (NRB) formed major populations in the nitrate-treated
reservoir. The NRB community was able to utilize the same
substrates as the SRB community. Compared to the bio-
cide-treated reservoir, the microbial community in the
nitrate-treated reservoir was more phylogenetically diverse

and able to grow on a wider range of substrates. Enrich-
ment culture studies showed that SRB were present in both
reservoirs, but the nitrate-treated reservoir had the least
diverse SRB community. Isolation and characterisation of
one of the dominant populations observed during nitrate
treatment (strain STF-07) showed that heterotrophic deni-
trifying bacteria aYliated to Terasakiella probably contrib-
uted signiWcantly to the inhibition of SRB.
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Introduction

During secondary oil production in North Sea oil Welds, sea
water is often injected in order to maintain reservoir pres-
sure and enhance oil recovery. The introduction of sea
water alters the physical and chemical conditions in the res-
ervoir as sulphate-rich sea water gradually cools the reser-
voir formation [1, 2] and blends with the warm (60–200°C)
indigenous reservoir water (formation water) which is low
in sulphate and rich in organic acids [3–5]. The cooling of
the reservoir formation creates a new biotope for meso-
philic sea water bacteria in the near injector area. Tradition-
ally, oxygen is removed from the sea water before
injection, so aerobic microbial activity in the reservoir is
limited. The anoxic conditions combined with the high sul-
phate content of sea water give favourable conditions for
sulphate-reducing bacteria (SRB). SRB produce the highly
toxic gas hydrogen sulphide (H2S) during anaerobic respi-
ration with sulphate, an activity that leads to reservoir sour-
ing [2, 6]. Biogenic souring of oil reservoirs is of great
concern to the oil industry as it leads to corrosion, plugging
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and deterioration of oil and gas quality [2, 6, 7]. Water
treatment with biocides is commonly used as a souring
inhibitor but the eVect varies. This may be due to the selec-
tion towards biocide-resistant populations [8] and biocide
resistance of bioWlm associated SRB [9].

Nitrate treatment has been shown to inhibit souring in
reservoir model systems [10–12] and in the Weld [13–18].
The method is based on shifting the microbial activity from
sulphate reduction to nitrate reduction by injection of
nitrate. According to the bioWlm model, H2S production is
generated in the near injector area of the reservoir and is
dependent on carbon, sulphate and bacterial biomass [19].
The latter is again regulated by the availability of mineral
nutrients. In North Sea oil reservoirs, hydrocarbons from
residual oil are accessible in surplus and may serve as car-
bon and energy sources for both SRB and nitrate-reducing
bacteria (NRB) [20]. The organic acids from formation
water also serve as potential substrates as they are readily
degradable by bacteria and water injection additives con-
taining organic components may also support microbial
growth [21]. Growth on inorganic components is also
possible; H2 and CO2 generated in the Earth’s crust drive a
deep biosphere primary production involving SRB,
iron-reducing bacteria and methanogens [22]. Sulphide-
oxidizing bacteria (SOB) are also part of the microbial
community in oil reservoirs [23, 24] and some isolates use
nitrate as electron acceptor [25].

Due to the more favourable energy potential of nitrate
reduction compared to sulphate reduction, NRB will out
compete SRB for common substrates, but this mechanism
is believed to be valid only in carbon limited systems [18].
It has been suggested that the inhibitory eVect of nitrite is a
key mechanism in nitrate treatment [11, 14] in addition to
the increase in redox potential due to NRB activity [26, 27].
Nitric oxide and nitrous oxide, intermediates of denitriWca-
tion, have also been shown to inhibit bacterial growth in
general [28, 29]. The activity of nitrate-reducing sulphide-
oxidizing bacteria (NR-SOB) will contribute to increased
redox potential by biological oxidation of sulphide.

For oVshore application, it is necessary to limit the quan-
tity of nitrate injected due to logistic concerns. Laboratory
and Weld experiments have shown that continuous injection
of a low concentration of nitrate (0.25–0.71 mM) is suY-
cient to reduce reservoir souring [11, 12, 17]. Concomitant
with enrichment of NRB, a reduction in numbers and activ-
ity of SRB was observed in the water injection systems at
Veslefrikk and Gullfaks oil Welds during nitrate treatment
[13, 17, 18]. A reduction in H2S produced from the Gullf-
aks Weld also showed eVect at reservoir level [17].

The aim of the present study was to characterise the
microbial community near injector in a nitrate-treated
North Sea oil reservoir and to identify NRB contributing
to the inhibition of SRB. The microbial community of a

biocide-treated reservoir was analysed for comparison.
Sampling was done by reversing the water Xow at the injec-
tor wells (backXowing) and collecting samples at diVerent
time intervals. The microbial communities of the two reser-
voirs were studied by 16S rRNA gene-based PCR-DGGE
analysis followed by DNA sequencing. An extensive
enrichment culture study was performed in order to survey
NRB and SRB activities in the two reservoirs. PCR-DGGE
analysis of enrichment cultures was performed in an
attempt to connect dominating environmental populations
to speciWc activity.

Materials and methods

Sampling

The Statfjord Weld is located in the Tampen Spur area in the
Norwegian sector of the North Sea. The reservoirs consist
of sandstone from the Lower Brent formation. Commercial
oil production started in 1979 and deaerated sea water (gas
stripped by methane) treated with biocides was injected for
pressure support from the start. The wells included in this
study, A-42 and B-26, are comparable regarding both for-
mation properties and treatment history. At well B-26, bio-
cide treatment was replaced by nitrate injection and had
been treated with nitrate for the duration of 6 months at the
time of sampling. Nitrate was added continuously in the
form of [Ca(NO3)2] to a Wnal concentration of 0.25 mM
NO3

¡. The present biocide regime at well A-42 is tetrakis
hydroxymethyl phosphonium sulphate (THPS) dosed three
times a week (250 ppm) upstream deaerator. In addition,
oxygen scavenger is continuously added into the deaerator
and antifoam is added upstream deaerator if needed.

In the Statfjord reservoirs, the distance between injectors
and producers is usually large and it takes between 2 and
7 years to Xood one pore volume. In order to assess the
eVect of nitrate injection on the microbial community in the
reservoir, water from the near injector area was sampled
and analysed. The two injection wells, A-42 and B-26,
were shut down for 4 days and the water Xow was reversed
(backXowed) and sampled at diVerent time intervals
(Fig. 1). Samples for microbial analysis were collected in
500 ml sterilised glass Duran bottles after 0, 2, 6, 12, 30,
48, 60, 78 and 96 h backXowing from well A-42 and after
¡0.5, 1, 4, 8, 24, 36, 54, 72 and 95 h backXowing from well
B-26. The sample collected at the time ¡0.5 h contained
water that had reached well-bottom but not the reservoir.
The bottles were completely Wlled before capping to mini-
mise exposure to air.

The sulphide content of the backXowed water showed
that SRB activity was lower in the nitrate-treated reservoir
(<3 mg H2S/l) compared to the biocide-treated reservoir
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(25–30 mg H2S/l) (Table 1). The biocide-treated well, A-
42, is henceforth referred to as STA and the nitrate-treated
well, B-26, is referred to as STB.

Enrichment culture study

NRB were enriched in a marine mineral medium with resa-
zurin as redox indicator [30]. The medium was prepared in
two diVerent redox states: one was made anoxic by Xushing
with N2:CO2 (90:10) targeting facultative anaerobic NRB
(F-NRB), the other was in addition reduced with 2 mM

Na2S (Wnal concentration) targeting obligate anaerobic
NRB (O-NRB). SRB were enriched in a marine mineral
medium [31] modiWed and designated W20 as previously
described [11]. The following mixed vitamin solution
(5 ml) was added per litre media (modiWed after [31, 32]):
D(+)biotin (2 mg/l); 4-aminobenzoic acid (8 mg/l); Ca-
pantothenate, cyanocobalamin (10 mg/l); nicotinic acid,
thiamine dichloride (20 mg/l); pyridoxamine·2HCl (30 mg/l).
The media were dispensed in aliquots of 15 ml into nitro-
gen-Xushed 20 ml tubes and sealed with butyl rubber stop-
pers and aluminium crimp seals. Growth was assessed on
substrates that reXect the range of carbon and energy
sources accessible under in situ conditions in the reservoir.
The substrate amount and concentrations used were as fol-
lows: H2:CO2 (80:20% headspace, added after inoculation);
formate, propionate, butyrate, valerate and caproate
(10 mM); acetate and lactate (20 mM); palmitate (15 mM);
benzoate (0.1 mM); toluene, ethanol, methanol (0.1%, v/v);
mixed acids C3–C6 (2.5 mM of each) and crude oil
(0.15 ml). Lactate was included for the purpose of targeting
Desulfovibrio spp.

A medium for enrichment of aerobic sulphide-oxidizing
bacteria (A-SOB) was prepared by placing 5 ml sulphide-
rich 3% agar in the bottom of a 20 ml N2-Xushed tube. The
agar was topped with 2 ml W20 and sealed as described
above. The agar was left to polymerize overnight before the
tubes were topped with 10 ml W20 medium. After inocula-
tion, a syringe needle connected to a 0.2 �m Wlter was
pierced through the rubber stopper for air supply. The
medium for NR-SOB was prepared in the same way but
with reduced NRB medium instead of W20 and without air
supply.

In order to ensure anoxic conditions during inoculation,
subsamples of the backXowed water were prepared in
N2-Xushed 100 ml serum bottles sealed with butyl rubber
stoppers and aluminium crimp seals. The enrichment cul-
tures were inoculated by transferring 1 ml of the subsamples
using a N2-Xushed syringe. When needed, the subsamples
were injected with N2 to compensate for the reduction in water
volume. The cultures were incubated at 30°C for 3 months.

Growth was monitored by visually observing the cul-
tures for turbidity and was conWrmed by phase microscopy.
Activity of NRB was determined by measuring the
reduction in nitrate concentration by ion exchange chroma-
tography (IC25 Chromatograph/AS11-HC4x250 Column,
Dionex, CA, USA) using UV detection (Spectra-physics
UV150, Thermo Separation Products, CA, USA). Activity
of SRB was determined by accumulation of H2S in the cul-
tures according to Cord-Ruwisch [33]. Activity of NR-SOB
was determined by decrease in nitrate concentration and by
visual assessment of sulphur production (formation of
white precipitate). Activity of A-SOB was assessed by pro-
duction of sulphur.

Fig. 1 Illustration of the sandstone reservoir at Statfjord with injector
and producer wells. The stippled arrows show the water direction
during water injection. The solid arrows show the water Xow during
reverse Xooding (backXowing) and the potential for collection of water
from non-Xooded areas of the reservoir

Table 1 Sulphide content of backXowed water, data from Bjørnestad
et al. [54]

Well A-42 (STA) Well B-26 (STB)

Type of well Sea water injector Sea water injector

Treatment of 
injection water

Deaerated with 
added biocide

Deaerated with 
added nitrate

H2S (mg/l) at the 
end of backXow

3–4 <1

H2S (mg/l) adjusted 
according 
to tracer response

25–30 <3
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Bacterial PCR-DGGE analysis and the subsequent
sequence analysis of dominant bands were performed on
enrichment cultures from sample 6 h from STA and sample
4 h from STB.

Characterisation of isolate

Salt and temperature requirements were determined during
aerobic growth on pyruvate (10 mM) in a medium (D20)
containing: NaCl, 20.0 g; Na2SO4, 4.0 g; MgCl2·6H2O,
3.0 g; NH4Cl, 1.4 g; K2HPO4·3H2O, 0.84 g; KH2PO4,
0.5 g; KCl, 0.5 g; CaCl2·2H2O, 0.15 g; 1 ml trace element
solution SL 10 [34] per litre distilled water. The medium
was autoclaved before adding 5 ml mixed vitamin solution
and 30 ml 1 M NaHCO3. The medium was dispensed in
aliquots of 15 ml into 20 ml tubes and sealed with rubber
stoppers (Apotekproduksjon AS, Oslo, Norway) and alu-
minium crimp seals. Growth was determined by the
increase in OD600.

The ability to utilize the following electron donors under
nitrate-reducing conditions was determined by culturing in
F-NRB medium: H2 (80:20% H2:CO2 headspace); H2S
(1–20 �M); formate, propionate, butyrate, caproate (10 mM);
acetate (20 mM); toluene (0.1%, v/v p.a. quality), crude oil
(0.2 ml); n-dodecane (0.15 ml). Growth was determined by
increase in OD600 and by phase microscopy (crude oil and
n-dodecane), in three successive transfers. The mode of
nitrate reduction was determined by measuring NO3

¡ and
NO2

¡ by ion exchange chromatography and ammonium
Xuorometrically [35] during anaerobic growth with nitrate
as electron acceptor. Aerobic growth on hydrocarbons was
assessed in D20 medium amended with toluene, crude oil
and n-dodecane. All incubations were performed at 30°C,
except for the temperature experiment.

Molecular analysis

From both environmental samples and enrichment cultures,
a volume of 1.5 ml was centrifuged at 12,000£g for
20 min. The supernatant was discharged and the pellets
were frozen at ¡20°C until further analysis. The pellets
were suspended in 50 �l molecular biology grade water
before analysis (Eppendorf, Hamburg, Germany). AmpliW-
cation of the V3 region of bacterial 16S rRNA genes was
performed by whole-cell PCR using the forward Bacteria
primer pA8f with GC clamp [36] and reverse universal
primer PRUN518r [37]. AmpliWcation of archaeal V3
region 16S rRNA genes was performed by whole-cell PCR
using forward Archaea primer Arc931f [38] with GC clamp
[37] and reverse primer UA1406r [39]. Per reaction, the
PCR mixture contained: 3 �l cell suspension, 0.5 �M of
each primer, 12.5 �l HotStarTaq Master Mix (Qiagen,
Hilden, Germany), 2.5 �g BSA, and molecular biology

grade water to a Wnal volume of 25 �l. Bacterial PCR was
performed in a GeneAmp2400 thermal cycler (Applied
Biosystems, CA, USA) as follows: 95°C for 15 min; 35
cycles at 94°C for 30 s, 55°C for 30 s, 72°C for 1 min; 72°C
for 10 min. The same program was used for archaeal PCR,
except the annealing temperature was set at 64°C and
ampliWcation was run for 40 cycles. Positive ampliWcation
was determined by electrophoresis of 5 �l PCR sample in
1.5% agarose gel stained with ethidium bromide.

DGGE analysis of PCR products was performed as
described earlier [40] but modiWed using a denaturing gra-
dient ranging from 20 to 60% and by running the gel for
18 h at 70 V. The gels were photographed after staining
with SYBR Gold (Invitrogen, Carlsbad, CA, USA) in 1£
TAE for 45 min. Bands were excised from the DGGE gel
and DNA eluated with molecular biology grade water and
reampliWed. PCR was performed as described above with
the following modiWcations: 1 �l of DNA eluate served as
template, no BSA was added and the reaction was run for
30 cycles. In some cases, reampliWed DNA was run on a
second DGGE for better separation before further analysis.
ReampliWed DNA was puriWed using QIAquick PCR puri-
Wcation kit (Qiagen, Hilden, Germany). Sequence PCR was
performed using the primer PRUN518r and BigDye V.3.1
sequencing kit in accordance with the manufacturer
(Applied Biosystems, CA, USA). Sequence analysis was
performed on ABI PRISM 3700 and ABI 3730xl DNA ana-
lyzer (Applied Biosystems, CA, USA) by the Sars Centre
DNA sequence facility at University Research of Bergen
(Unifob AS, Bergen, Norway). The DNA sequences were
analysed using BLAST tool [41] for identiWcation of the
closest relative registered in the GenBank (NCBI) [42] and
by the Ribosomal Database Project (RDP) classiWer [43]
for taxonomic classiWcation. Sequences with low similarity
to GenBank sequences were checked for chimera [44].
Similar sequence types were compared pair-wise using
BLAST 2 sequences tool (NCBI) [45]. The term “sequence
type” refers to a set of sequences from the same environ-
ment that share 100% sequence identity. The phylogenetic
distance between sequence types was calculated using Clu-
stalX [46]. Phylogenetic trees were constructed using the
bootstrap neighbour-joining algorithm (1,000 trials) and
Tree View version 1.6.6 [47].

Near complete 16S rRNA gene analysis of the bacterium
isolate was performed by whole-cell PCR using the forward
Bacteria primer pA8f [48, 49] and reverse Bacteria primer
Hr [49]. The PCR reaction was performed as described
above with 5 �l culture (»108 cells/ml) as template. The
PCR product was puriWed, then sequenced using forward
primers: pA8f, PRBA338f [50] and PRE927f [51], and
reverse primers: PRUN518r, PRE944r [51] and Hr. The
sequence analysis was performed as described above; the
DNA analyser used was ABI 3730xl. The partial sequences
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obtained were assembled using the CAP3 DNA Assembly
Program [52] and manually checked for gaps and undesig-
nated bases (N). The DNA sequence was analysed using
BLAST tool [41] for identiWcation of the closest validated
relatives registered in the GenBank (NCBI) [42].

Nucleotide sequence accession numbers

16S rRNA gene sequences have been deposited in the
GenBank (NCBI) under accession numbers EU109512–
EU109531, EU312035–EU312052, EU330894–EU330920
and EU594271.

Results

Major environmental populations

Bacterial 16S rRNA gene sequences were successfully
ampliWed from all environmental samples, whilst no archa-
eal 16S rRNA genes were ampliWed from any of the
samples.

DGGE analysis of ampliWed bacterial DNA from the
biocide-treated reservoir (STA) showed few bands and a
similar band pattern throughout the sample series (Fig. 2).
The major populations were aYliated to mesophilic, hetero-
trophic and chemolithotrophic bacteria (Table 2). The dom-
inant sequence type observed in all samples from 6 hours’
backXowing and onwards showed 100% sequence identity

to Phaeobacter arcticus [53]. None of the sequences were
aYliated to SRB.

DGGE analysis of ampliWed bacterial DNA from the
nitrate-treated reservoir (STB) revealed a diverse band pat-
tern that varied with sampling time (Fig. 2). The Wrst sam-
ple of the series (¡0.5 h) deviated from the other samples,
as it consisted of water that had reached the bottom of the
well but not penetrated the reservoir. The bottom well sam-
ple shared no common populations with the reservoir sam-
ples. Amongst the major environmental populations
observed in the reservoir samples was a bacterium aYliated
to the denitriWer Terasakiella pusilla (sequence type STB-
g190). This bacterium was observed in all samples col-
lected between 36 and 95 hours’ backXowing. Several of
the other major populations at STB also belonged to the
�-Proteobacteria, and based on the information obtained
from enrichment culture studies and sequence analysis,
some are connected to nitrate-reducing activity (Table 2).
�-Proteobacteria constituted another major group in the
nitrate-treated reservoir. Bacteria aYliated to sulphide-
oxidizing Arcobacter were observed throughout the sample
series, but primarily after 54 hours’ backXowing. None of
the major populations from the nitrate-treated reservoir
were aYliated to SRB.

Microbial processes

The enrichment culture study showed that both NRB and
SRB were present in the communities of both the reservoirs.

Fig. 2 DGGE analysis of bacte-
rial 16S rRNA gene PCR prod-
ucts of environmental samples 
from the biocide-treated 
reservoir (STA) and the nitrate-
treated reservoir (STB). Lanes 
marked “m” refer to DNA mark-
er with diVerent GC content. 
Numbers on top of lanes refer to 
hours of backXowing. The bands 
aligned with numbered arrows 
are referred to in Table 2
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One exception was growth of NR-SOB, which was
observed only in samples from STB (data not included).
Activity of A-SOB was observed in samples from both the
reservoirs (data not included). The diversity of substrates
that sustained growth was greater in the enrichment series
from STB than in the series from STA. SRB from STB
grew on all substrates, but only poorly on benzoate and
methanol. Enrichment cultures targeting NRB from STB
yielded growth accompanied by nitrate reduction on all
substrates, but cultures targeting F-NRB grew poorly on
toluene and crude oil.

SRB from STA did not grow on aromatic components
and methanol, and grew poorly on crude oil, formate and
propionate. Cultures targeting NRB from STA grew well
on fatty acids, but poorly on aromatic components, metha-
nol and crude oil. For a detailed overview of results from
the enrichment culture study, see Table A in the supple-
mentary material.

Phylogenetic diversity

Figures 3 and 4 show the phylogenetic distance between
major environmental populations and enrichment culture
phylotypes observed at STA and STB, respectively, based
on partial 16S rRNA gene sequences. Of the four major
environmental populations at STA, two belonged to the

�-Proteobacteria, one to the �-Proteobacteria and one to the
Firmicutes (Fig. 3). Overall, the enrichment culture phylo-
types belonged to bacterial groups not represented amongst
the major environmental populations: �-Proteobacteria,
�-Proteobacteria and Spirochaetes. The dominant environ-
mental population at STA aYliated to Phaeobacter (STA-
k215) was retrieved in both SRB enrichment culture added
benzoate and NRB enrichment cultures added H2:CO2, for-
mate and methanol (STA-231E). The SRB enrichment cul-
ture in question did not produce H2S during incubation. The
presence of NRB at STA was evident by growth of bacteria
aYliated to the genera Sedimenticola and Terasakiella,
where the latter had identical sequence to the major envi-
ronmental population STB-g190 at STB. Also observed in
NRB enrichment cultures from STA was a bacterium with
identical sequence to the environmental population STB-
k526 at STB (STA-236E).

Four of the major environmental populations at STB
belonged to the �-Proteobacteria, including the two
dominant populations STB-k190 and STB-k161 (Fig. 4).
Five of the populations belonged to the �-Proteobacteria
and four belonged to the �-Proteobacteria. In the latter
group, all were aYliated to the genus Arcobacter. Only one
major population at STB belonged to the Firmicutes, and
it had identical sequence to the Firmicute observed at
STA. Enrichment culture phylotypes belonging to the

Table 2 Sequence types retrieved from DGGE gel bands

NC not cultivated, NR growth pattern did not reveal speciWc metabolic activity, ND not determined
a Metabolic activity according to enrichment culture study
b Metabolism of closest related genus

Arrow 
no.

Time 
(h)

Sequence 
type

Metabolisma Closest GenBank match (% similarity) AYliation (RDP 
classiWer)

Metabolismb Nitrate 
reduction

1 0–96 STA-k215 NR Phaeobacter arcticus DQ514304 (100) Phaeobacter Heterotrophic ¡
2 0–2 STA-k98 NC �-Proteobacterium clone 1944 EF188793 (96) Jannaschia Heterotrophic ¡
2 6–96 STA-k215 NR Phaeobacter arcticus DQ514304 (100) Phaeobacter Heterotrophic ¡
3 30–78 STA-k498 NR Firmicutes bacterium VFB-89 EU594314 (100) Clostridiales – ND

3 36–72 STB-g184 NR Firmicutes bacterium VFB-89 EU594314 (100) Clostridiales – ND

4 0–12 STA-k90 NC �-Proteobacterium clone S1-65 EF491325 (98) Arcobacter Sulphide-oxidizing +

5 ¡0.5 STB-g144 NC Bacterium clone 126D69 EU735030 (95) Bacteria – ND

5 24, 95 STB-k212 NC Bacterium CAR-SF AB086227 (99) �-Proteobacteria – ND

6 1, 24 STB-k526 NRB Sneathiella glossodoripedis AB289439 (96) �-Proteobacteria – ND

6 4 STB-g537 NRB Nesiotobacter exalbescens AF513441 (99) Nesiotobacter Heterotrophic +

6 8, 36–95 STB-k161 NC �-Proteobacterium VF-25 EU594298 (100) Rhodobacteraceae – ND

7 4, 8 STB-g117 NC Vibrio sp. K1-04 AJ784132 (99) Vibrio Heterotrophic +

7 36–95 STB-g190 NRB �-Proteobacterium VFA-M201 EU594289 (99) Terasakiella Heterotrophic +

8 54–95 STB-g185 NC Arcobacter sp. clone A3b2 AJ271655 (98) Arcobacter Sulphide-oxidizing +

9 54, 72 STB-g186 NC �-Proteobacterium VF-37 EU594299 (100) Arcobacter Sulphide-oxidizing +

10 4 STB-g122 NC �-Proteobacterium clone S1-65 EF491325 (97) Arcobacter Sulphide-oxidizing +

11 4 STB-g123 NC �-Proteobacterium clone 
OMEGA_pl_cont_3_A03 EU052239 (96)

Arcobacter Sulphide-oxidizing +
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Fig. 3 Phylogenetic tree of partial 16S rRNA sequences retrieved
from the biocide-treated reservoir (STA). Sequence types given in
bold refer to major environmental populations. Sequence types ending
with “E” refer to bacteria observed in enrichment cultures. Sequences
marked with asterisk were identical to major environmental popula-

tions during nitrate treatment (STB). Reference sequences from
GenBank (NCBI) were cut to the same length as the sample sequences.
The scale refers to 0.1 changes per nucleotide. Bootstrap values were
obtained from 1,000 bootstrap trials and are given in percentage
123
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Fig. 4 Phylogenetic tree of partial 16S rRNA sequences retrieved
from the nitrate-treated reservoir (STB). Sequence types given in bold
refer to major environmental populations. Sequence types ending with
“E” refer to bacteria observed in enrichment cultures. Reference se-
quences from GenBank (NCBI) were cut to the same length as the

sample sequences, except in cases were only partial sequence was
available (dagger). The scale refers to 0.1 changes per nucleotide.
Bootstrap values were obtained from 1,000 bootstrap trials and are
given in percentage
123
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�-Proteobacteria and Spirochaetes were also observed at
STB, in addition to members of the Thermotogae and Bac-
teroidetes. The study revealed the presence of bacteria aYl-
iated to both heterotrophic and chemolithotrophic NRB.
Bacteria aYliated to Sulfurimonas denitriWcans (94%) and
Sedimenticola selenatireducens (98%) was observed grow-
ing on H2:CO2 in enrichment cultures targeting F-NRB
(STB-827E and STB-828E). An unknown �-Proteobacte-
rium (STB-668E) with identical sequence to a bacterium
observed previously in an oVshore water injection system
during nitrate treatment [13] was observed in enrichment
cultures targeting A-SOB and NR-SOB and in an O-NRB
enrichment culture with added propionate. Bacteria
observed growing on fatty acids and alcohols under nitrate-
reducing conditions were aYliated to the genera Terasaki-
ella, Marinobacter, Nesiotobacter, Phaeobacter and
Geotoga in addition to unknown bacteria belonging to Fir-
micutes (STB-832E) and Bacteroidetes (STB-657E). Some
of the major environmental populations (sequence types
STB-g190, STB-k526 and STB-g537) shared 100%
sequence identity with NRB enrichment culture phylotypes
growing on a range of substrates including fatty acids, alco-
hols and aromatic components. Amongst the phylotypes
observed in SRB enrichments from STB were bacteria aYl-
iated to Desulfotignum (STB-644E) and Desulfovibrio
(STB-821E).

The results from the enrichment study are not conclusive
and should not be construed as such. However, an overview
of the metabolic and phylogenetic diversity in the two res-
ervoir communities was obtained in addition to information
about the activity of major populations. All phylotypes
observed in enrichment cultures from STA and STB are
listed in the supplementary material in Table B along with
the media and substrates that sustained their growth.

Isolate strain STF-07

The dominant bacterium at STB (sequence type STB-g190)
shared 100% sequence identity with phylotypes observed in
NRB enrichment cultures from both STA and STB. A strain
of this bacterium was isolated after a successive dilution
series in F-NRB medium; Wrst with formate, thereafter with
pyruvate as electron donor, until a pure culture was
obtained. The isolate was designated strain STF-07. Near
complete 16S rRNA gene analysis of strain STF-07 revealed
a 96.4% sequence similarity to its closest validated relative
T. pusilla IFO 13613 (GenBank Accession No. AB006768).

The cells of STF-07 are spiral shaped, motile by polar
Xagellum, possibly one at each pole. The bacterium is mes-
ophilic; growth was observed at temperatures between 15
and 40°C, with optimum growth between 30 and 33°C. No
growth was observed at 9 and 45°C. Good growth was
observed on acetate and fatty acids C4 to C6 under nitrate-

reducing conditions, but only poor growth was observed on
formate. No growth was observed on inorganic energy
sources or hydrocarbons. Nitrate was reduced by mode of
denitriWcation (nitrate and nitrite was reduced, gas was
formed and no NH4

+ accumulated).

Discussion

A Weld-related mathematical model developed by Sunde
et al. [19] infers that reservoir souring is caused by bioWlm-
associated SRB located close to the injector wells. An eVec-
tive nitrate treatment should therefore be reXected in the
microbial community near the injector in the form of a shift
from SRB dominance to NRB dominance. The backXowed
injection water was assumed to mirror the microbial com-
munity in the reservoir by containing detached bioWlm
cells. Tracer studies veriWed not only the recollection of
injected water from both STA and STB but also showed
that the sampled water contained water from non-Xooded
areas of the two reservoirs [54]. However, by assuming that
the microbial activity primarily takes place in the Xooded
areas, the samples should reXect the active microbial com-
munity near the injector in terms of both composition and
metabolic activity.

The microbial community from the biocide-treated res-
ervoir (STA) consisted of only a few major populations of
which none were SRB. The dominant sequence type was
aYliated to a Phaeobacter-like bacterium that was not
associated with H2S production. The observed in situ sul-
phide level at STA (25–30 mg/l), however, suggested a sig-
niWcant SRB activity in the reservoir. Failure to detect in
situ SRB may have been due to biases in the PCR ampliW-
cation process. On the other hand, the PCR-DGGE analysis
may well have reXected the actual in situ community,
where SRB was inhibited by biocide to a level below the
detection limit of the PCR-DGGE method. A recent study
on the bioWlm community in the water injection system at
Veslefrikk (North Sea) showed that Desulfovibrio spp.
associated with H2S generation and corrosion in the system
during biocide treatment were low in numbers [13]. Viable
counts suggested that they constituted less than 1% of the
total microbial community, at which point they were not
detected by the PCR-DGGE method. Thus, experience
from other systems shows that H2S generation may well
originate from a small non-dominant SRB community.

The combined results of culture-independent community
structure analysis and enrichment culture studies showed
that major NRB populations were established in the nitrate-
treated reservoir (STB) after 6 months’ continuous nitrate
injection. NRB strain STF-07 shares 100% sequence iden-
tity with the dominant population observed in all samples
collected after 36 h. Based on the partial characterisation of
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strain STF-07, the dominant in situ NRB is heterotrophic,
able to utilize a range of fatty acids as the sole carbon and
energy source during anaerobic growth by denitriWcation.
Other major environmental populations of �-Proteobacteria
were also observed growing under nitrate-reducing
conditions and based on their substrate range they were also
heterotrophic, able to utilize fatty acids and aromatic
components.

The Wnding of NRB dominance at STB suggests eVec-
tive nitrate treatment in the sampled part of the reservoir.
Furthermore, the fact that the dominant in situ NRB reduce
nitrate by denitriWcation gives input to the fate of nitrate in
the reservoir. DenitriWcation is energetically more favour-
able than nitrate reduction to nitrite or ammonium, and is
generally considered to result in a better growth yield for
denitriWers. When considering the inhibitory mechanism of
SRB in a system dominated by denitriWers, nitrite accumu-
lation will probably be transient due to further reduction to
nitric oxide and nitrous oxide and Wnally nitrogen gas. This
suggests that nitrite, nitric oxide and nitrous oxide should
all be considered potential inhibitory agents of SRB at
STB, in addition to an overall increase in redox potential.

Bacteria aYliated to Arcobacter were part of the com-
munity both near the injection point and further into the res-
ervoir at STB. Members of the genus Arcobacter are
described as microaerophilic, NR-SOB that utilize organic
acids as carbon source [55]. The marine isolate Candidatus
Arcobacter sulWdicus, however, diVers from this descrip-
tion by growing autotrophically [56]. Arcobacter have fre-
quently been reported as members of oil reservoir
communities [23, 24, 57] and have also been observed in
bioWlm from an oVshore water injection system during
nitrate treatment [13]. Enrichment of NR-SOB has also
been observed in other oil Welds during nitrate treatment
[14, 58] and their role in sulphide remediation as well as
SRB inhibition have been addressed [14]. The importance
of active NR-SOB for successful reduction in sulphide lev-
els in oil Welds is emphasized by some authors [59], but in
the present study, NR-SOB were not the dominant NRB
after 6 months of nitrate treatment. The presence of Arcob-
acter at STB was most predominant furthest from the injec-
tor. Their location far from the injector point suggests that
these Arcobacter respired with nitrate in situ. Furthermore,
their presence indicates a transition zone between nitrate
reduction and sulphate reduction in the reservoir. Due to
their speciWc metabolism, the degree of NR-SOB presence
may be used as indicator for treatment eYciency. The
Arcobacter that were observed in samples collected nearest
to the injectors at both STA and STB may have been
involved in microaerophilic oxidation of H2S in the reser-
voir. Although the injection water is deaerated, trace
amounts of oxygen may reach the reservoir [2] and sustain
microaerophilic activity nearest to injectors.

Besides the Terasakiella-like denitriWer STF-07, the
enrichment study revealed an NRB community constituting
apparently heterotrophic and chemolithotrophic NRB aYli-
ated to the genera Marinobacter, Sedimenticola, Nesiotob-
acter and Sulfurimonas. The microbial community at STB
exhibited a larger phylogenetic diversity than the commu-
nity at STA and was also able to grow on a wider range of
substrates. This was probably due to the absence of selec-
tion pressure caused by biocide and to the introduction of
nitrate as an additional electron acceptor. The absence of
major SRB populations and the low H2S generation at STB
(Table 1) suggest inhibition of SRB by nitrate treatment.
This conclusion was further strengthened by the enrichment
culture study that revealed a phylogenetically less diverse
SRB community at STB compared to STA, which suggest
inhibition and maybe also elimination of SRB (Figs. 3, 4).
A collapse in the SRB community during nitrate treatment
has been observed in other studies, but SRB were reported
to be present in low numbers [11, 17, 18] leading to regen-
eration of sulphide production after the termination of
nitrate injection [11]. Some SRB are able to use nitrate as
alternative electron acceptor [60–62], an ability that has
given rise to speculation of SRB being active as nitrate
reducers during nitrate treatment. Bacteria closely aYliated
to Desulfovibrio and Desulfotignum were observed in
enrichment cultures from both STA and STB targeting O-
NRB, but there was no evidence that these bacteria formed
major environmental populations during nitrate treatment.

None of the major environmental populations at STA or
STB were aYliated to known hydrocarbon degraders. This
was surprising as crude oil is the dominant source of carbon
and energy in the water washed areas near injectors. Fatty
acid containing formation water is dislodged from the area,
and carbon that is available from sea water/water additives
is probably consumed in the water injection system before
it reaches the reservoir. Hence, it is reasonable to assume
that major oil degrading populations are present in both res-
ervoirs. They may have remained undetected due to a close
association to the oil phase. Non-hydrocarbon degraders
such as Terasakiella-like strain STF-07 were probably
more loosely attached to the bioWlm and thus more domi-
nant in the sampled water. The Terasakiella-like bacterium
probably grew on fatty acids produced by the oil degrading
community. The theory of an oil Wxed community also
oVers a third possible explanation for the absence of SRB in
the samples from STA; the H2S generating SRB commu-
nity may have been Wrmly attached to the oil phase and thus
not sampled. Although this theory implies that only parts of
the communities at STA and STB were sampled, it does not
interfere with the fact that major NRB populations were
established at STB as a result of nitrate treatment.

In conclusion, the current study shows that nitrate injec-
tion inhibited SRB activity and reduced the diversity of the
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SRB community in a North Sea oil reservoir. The NRB
community enriched in the reservoir was able to utilize the
same range of substrates as the SRB community, which
shows potential for long-term inhibition of SRB in the sys-
tem. As dominant population, mesophilic, heterotrophic
denitrifying bacteria aYliated to Terasakiella probably
contributed signiWcantly to the inhibition of SRB. The eco-
logical approach of nitrate treatment, which is stimulating
in situ inhibiting agents, is clearly the advantage of the
method compared to biocide treatment. Where batch bio-
cide treatment may have a temporary eVect at best, NRB
may provide continuous inhibition of SRB in the microen-
vironment where they both inhabit.
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